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The paradigm of Cloud computing introduces new approaches to manage IT services going beyond concepts

originating in traditional IT service management. The main goal is to automate the whole management of
services to reduce costs and to make management tasks less error-prone. Two different service management
paradigms are used in practice: configuration management and model-driven Cloud management. The latter one
aims to be a holistic management approach for services in the Cloud. However, both management paradigms
are originating in different backgrounds, thus model-driven Cloud management does not cover all aspects of
configuration management that are key for Cloud services. This paper presents approaches for integrating
configuration management with model-driven Cloud management and how they can be realized based on the
OASIS Topology and Orchestration Specification for Cloud Applications and Chef, a popular configuration
management tool. These approaches enable the creation of holistic and highly portable service models.

1 INTRODUCTION

Today, many providers in the field of Cloud com-
puting (Leymann, 2011; Mell and Grance, 2011) at-
tract people to create highly scalable applications and
services using the providers’ proprietary offerings.
These can be infrastructure offerings such as Amazon
Web Services' or platform offerings such as Google
App Engine.?> Many people get attracted by these offer-
ings because low requirements are put on developers
when starting to create services and applications. The
corresponding meta models are simple and the pro-
vided tooling is easy to use. This results in a very flat
learning curve.

However, when services get more complex, their
management becomes hard (Giinther et al., 2010). It
may be even impossible to move the service to another
Cloud provider because of missing standards that en-
sure portability. The results are vendor lock-in and
bad manageability. Thus, the following main contribu-
tions of this paper are focused on improving the man-
ageability of services in the Cloud without abandon

Uhttp://aws.amazon.com
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portability: (1) the direct integration of lower-level
configuration definitions such as scripts with higher-
level service models. (2) The transparent integration
of configuration definitions with higher-level service
models, so the type of the configuration definitions
is completely transparent to the underlying runtime
environment that is responsible for the actual service
deployment and management. (3) Combining the di-
rect and the transparent integration approach to bring
together the strength of both of them and to reduce
their individual shortcomings. To maintain portability,
the actual concepts described in this paper do not stick
to specific Cloud offerings.

The remainder of this paper is structured as follows:
Section 2 further refines the actual problem that is the
motivation for this paper. The Topology and Orches-
tration Specification for Cloud Applications (OASIS,
2012), hereafter referred to as TOSCA, is presented
as a representative to realize model-driven Cloud man-
agement in Section 3; in addition, Chef is introduced
as an example for configuration management tooling.
We describe the main contributions of this paper in
Section 4, namely the integration concepts. Section 5
shortly describes the implementation that was created
to evaluate the integration concepts and to show their



realization. Related work is presented in Section 6.
Section 7 concludes this paper and describes limita-
tions and future work.

2 PROBLEM STATEMENT

As of today, the so called DevOps methodolo-
gies (Humble and Farley, 2010; Humble and Molesky,
2011; Shamow, 2011) represent the leading paradigm
for efficiently managing services and applications in a
highly automated manner. The original goal of these
methodologies is to bring together developers and the
operations personnel. This goal is mainly achieved by
automating all the deployment and management tasks.
The actual automation is realized by configuration
management tooling (Giinther et al., 2010; Nelson-
Smith, 2011; Delaet et al., 2010) such as Chef? or
Puppet.* As a result, the corresponding management
processes are much more reliable and cost less in con-
trast to performing these processes manually. Con-
sequently, it is much easier to deploy and re-deploy
services into different environments such as develop-
ment, test, and production. The philosophy behind
the DevOps movement is to bring agile methodologies
into the world of IT infrastructure and service manage-
ment (Humble and Farley, 2010). This is achieved by
implementing the concept of “Infrastructure as Code”
using configuration management tooling. The concept
is based on the assumption that almost any action on
the infrastructure management level can be automated
programmatically (Smith, 2011). Consequently, prod-
ucts such as Chef or Puppet that implement this con-
cept provide a scripting language or a domain-specific
language to create and maintain platform-independent
configuration definitions for deploying and managing
an IT service (Giinther et al., 2010). Of course, con-
figuration management is not limited to implementing
DevOps scenarios. The concept of Infrastructure as
Code targets automation and cost reduction of service
management in general. These are essential parts of
the Cloud computing paradigm (Leymann, 2009; Va-
quero et al., 2008).

However, this approach is not appropriate for man-
aging complex services. Managing a large and sophis-
ticated service topology consisting of different ma-
chines using plain configuration management tooling
can get cumbersome and time-consuming. Even the in-
frastructure for providing a usual Web application can
become complex very quickly: there are several tech-
nologies required to realize load balancing, caching,

3http://www.opscode.com/chef
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and a full-text index. To specify such an infrastructure
a lot of “infrastructure code” is being created. As a re-
sult, it is hard to keep the code structure clean because
there is no holistic service model defined including
the service topology that prescribes the structure of a
service that can be instantiated. Every single change
of the “infrastructure code” becomes a risk because it
is hard to estimate the consequences of that particular
change (Nelson-Smith, 2011).

Thus, the paradigm of model-driven Cloud man-
agement provides a more holistic approach for man-
aging a service, but it does not completely replace the
DevOps approach. The model-driven approach does
not target many aspects of DevOps methodologies be-
cause both paradigms are originating in different back-
grounds. As an example, model-driven Cloud man-
agement does not directly specify how to perform the
lower-level actions on a virtual machine to install and
configure a particular software component. This is why
the main contributions of this paper described in Sec-
tion 4 are focused on bringing together the strengths of
both worlds by integrating configuration management
with model-driven Cloud management to minimize the
shortcomings of the individual approaches.

3 FUNDAMENTALS

The following Section 3.1 outlines the fundamentals of
TOSCA because the concepts presented in this paper
are mainly described using the emerging standard to
realize model-driven Cloud management. Several ex-
amples that are given in this paper are based on Chef,
a popular configuration management product. This is
why we shortly introduce Chef’s basic concepts and
terminology in Section 3.2.

3.1 Topology and Orchestration
Specification for Cloud Applications

From a perspective of plain configuration management,
a node is always a physical or virtual machine. How-
ever, the actual topology of an infrastructure to run a
particular service is more than a set of virtual machines
connected to one another. Software components are
running on each machine. These components can be
connected to components running on other machines,
such as an application that connects to a database. Fig-
ure 1 and Figure 2 outline two sample service topolo-
gies for a Web application. They illustrate a much
broader understanding of nodes and relationships. This
understanding leads to a higher-level model-driven
approach for defining the service topology. Such a



model is not limited to expressing relationships be-
tween different software components hosted on virtual
machines as shown in Figure 1. Nodes can also be
services offered by a Cloud provider as outlined in Fig-
ure 2. Furthermore, additional aspects of the service
topology such as networking can be modeled.

Web

Application connects to

Application
Server

hosted on hosted on

Virtual Machine| |Virtua| Machine| |Virtua| Machine

Figure 1: Service topology based on virtual machines.

These kinds of service topologies can be modeled
using TOSCA. The result is a self-contained, portable,
and executable service model that can be used to de-
ploy and manage service instances in the Cloud (Binz
et al., 2012). Before TOSCA was introduced, research
focused on migrating services from one Cloud envi-
ronment to another without taking the portability of
management aspects into account (Leymann et al.,
2011; Binz et al., 2011).

Web
Application
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connects to

Database Cache
Service Service
provided by  provided by

Cloud Service
Provider

Application

Container

Cluster of
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Figure 2: Service topology based on existing services.

The meta model of TOSCA is technically specified
by an XML schema definition. It prescribes the struc-
ture of a service template. The key parts to describe
a service topology inside such a service template are:
(1) node types that represent components to be used
inside the topology template. A single node type such
as “database server” can be instantiated once or several
times as a node template inside the topology template.
(2) Relationship types such as “hosted on” can be in-
stantiated as relationship templates inside the topology
template to express any kind of relation between two
particular node templates. (3) The topology template
defines the actual topological structure of an IT service
such as shown in Figure 1 and Figure 2; it consists of
node templates and relationship templates.

Properties Node Type Interfaces Operations Impl.

- Artifacts
S S ﬁé \__ Create >, :
RSN Dotabase Server [RAMCIITECE [ shen
Password e I script
Ty

Figure 3: Example for a TOSCA node type.

Figure 3 presents an example for a node type that
defines a database server component. A node type can
own arbitrary property definitions such as “username”
and “password” in case of a database server. These
properties are explicitly defined and attached to a par-
ticular node type. Node templates can include concrete
values for these properties. Furthermore, a node type
can own interfaces. A particular interface provides
operations, which define the possibilities of interac-
tion of a node of the given node type. We assume
that in future versions of TOSCA an arbitrary node
type owns a “lifecycle” interface providing at least
two operations: “create” and “terminate” the node of
a particular node type. As yet, the node type definition
is abstract and does not say anything about how an
operation is implemented. Thus, one or more concrete
implementation artifacts can be linked to an opera-
tion. Such an implementation artifact is created by
defining an artifact template inside the service tem-
plate. Then, the artifact template can be attached to
at least one operation as an implementation artifact.
For instance, an implementation for the “create” oper-
ation can be a Unix shell script to install the database
server. In addition, another script can be attached to
the same operation that performs the equivalent ac-
tions on Windows-based systems. Attaching several
implementation artifacts to a particular operation im-
proves the portability of the service template because
the operation can be performed on different platforms.
The definition of relationship types is similar to the
definition of node types (OASIS, 2012).

TOSCA is not only focused on specifying the ser-
vice topology. Management plans can be defined to
support the whole lifecycle of an application, includ-
ing deployment, maintenance, and termination (Bre-
itenbiicher et al., 2013). These plans can be defined
using languages such as the Business Process Model
and Notation (OMG, 2011) or the Web Services Busi-
ness Process Execution Language (OASIS, 2007).

All the files that are referenced inside the service
template such as scripts, binaries, and plans get packed
together with the service template into a Cloud ser-
vice archive (CSAR). The CSAR is completely self-
contained, that is, it contains everything to deploy and
manage the Cloud service that is specified by the in-
cluded service template. The software that is able to
process CSARs is referred to as a TOSCA runtime
environment.

In terms of Cloud management, there are prod-
ucts and approaches available beside TOSCA such
as VMware’s virtualization and Cloud management,5
OpenNebula (Milojici¢ et al., 2011), OpenStack,6 and

Shttp://www.vimware.com/solutions
Ohttp://www.openstack.org



others (Han et al., 2009). But these are primarily fo-
cused on the lower-level infrastructure. Their goal is
to simplify the management of virtualized resources
such as virtual machines or storage resources. This
paper is referring to TOSCA because of its holistic and
portable approach to implement model-driven Cloud
management. The emerging standard is supported by
a number of prominent companies in the industry such
as IBM, SAP, and Hewlett-Packard as well as research
institutions.

3.2 Chef

Chef is a popular configuration management product.
Its open source variant is publicly available and can
be used for free. Configuration definitions in Chef are
called recipes. These are basically scripts written in a
domain-specific language to express the target state of
a system (Giinther et al., 2010). One or more recipes
are bundled in a cookbook. In addition to cookbooks,
roles can be defined. A particular node can have zero
or more roles. Recipes can be associated with one or
more roles. This mechanism allows to link recipes
to nodes without assigning them directly. The Chef
server stores all the cookbooks and role definitions. In
addition, the server component manages a “run list”
for each node that is registered. The Chef client runs
on each of these nodes to connect to the Chef server.
A particular run list assigns recipes and roles to a node.
To execute the recipes, there is no Chef server required:
in addition to the Chef client/server mode, there is a
Chef solo mode available. Using this mode, recipes
can be directly executed using the Chef client without
a Chef server (Nelson-Smith, 2011).

Puppet’s architecture is similar to the architecture
of Chef, so the concepts and examples we describe
can be adapted to Puppet. The Puppet master is the
equivalent of the Chef server; the Puppet agent runs
on each node and is thus the equivalent of the Chef
client. Puppet’s manifests, written using a domain-
specific language and bundled in catalogs, are similar
to Chef’s recipes bundled in cookbooks (Loope, 2011;
Nelson-Smith, 2011). Further, there may be even more
configuration management tools owning a similar ar-
chitecture such as CFEngine.” These can be used to
realize the concepts presented in this paper, too.

4 INTEGRATION CONCEPTS

The main contributions of this paper are outlined in
this section: the goal is to bring together the strengths

Thttp://www.cfengine.com
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Figure 4: Deployment using configuration management.

of configuration management and model-driven Cloud
management in order to minimize their individual
shortcomings. TOSCA is used to realize model-driven
Cloud management by specifying the service template
on a higher level. Such a specification includes the
topology template, the node types, and the relation-
ship types. In addition, lower-level implementation
artifacts need to be attached to node type operations
and relationship type operations in order to realize the
operation’s functionality such as installing and config-
uring a particular software component. Model-driven
Cloud management does not focus on these lower-level
aspects. The straightforward approach is to implement
shell scripts to install and configure software compo-
nents. Because shell scripts are intended to be used
to perform simple tasks on a specific platform, us-
ing a platform-independent scripting language such
as Python or Ruby would be a better choice to create
portable artifacts. Otherwise, many platform-specific
implementation artifacts would have to be attached to
a single operation. However, another two difficulties
still remain: (1) it is hard to maintain the scripts be-
cause these scripting languages are general-purpose
languages and do not directly support the domain of
software installation and configuration. (2) It is hard
to design the scripts in a way so that they can be ported
to additional platforms without much effort.

This is why approaches originating in configura-
tion management are a great fit to further enhance the
value of model-driven Cloud management. As an ex-
ample, Figure 4 presents how Sugar® can be deployed
as a service in the Cloud using plain configuration
management tooling. Sugar is a Web-based customer
relationship management system; its “community edi-
tion” is publicly available as open source software.
For the actual deployment of Sugar, there are two vir-
tual machines provisioned. On the one machine, the
Apache Web server, the PHP module, and the Sugar ap-
plication get installed and configured by automatically
running artifacts. The MySQL server and the Sugar
database get installed and configured on the other ma-
chine. To finish the deployment, the application gets
connected to the database.

All these actions are performed by processing cor-

8http://www.sugarcrm.com
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Figure 5: Service topology for deploying and managing Sugar in the Cloud.

responding configuration definitions. The artifacts
are portable, configurable, and customizable (Giinther
et al., 2010). Using the higher-level service model
based on TOSCA including the service topology
model, the relation of these configuration definitions
to one another can be defined. Figure 5 outlines the
topology model for the Sugar Cloud service with ar-
tifacts attached including configuration definitions to
install and configure the software components that
are running on top of the virtual machines’ operating
system.

In addition to the advantages of using configuration
definitions regarding portability and maintainability,
configuration management products offer tools and
mechanisms to ease the management of service topolo-
gies. As an example, additional configuration defini-
tions can be assigned to nodes and roles owned by
at least one node in the topology. Typical examples
for activities realized by additional configuration defi-
nitions are updating an application, doing a database
backup, or customizing the configuration of a deployed
application.

For the popular configuration management tools
such as Chef or Puppet, there are configuration defini-
tions already available to install, configure, and man-
age many software components such as cookbooks
for the Apache Web server and the MySQL database
server. Consequently, they can be easily reused and
combined by creating a service topology model with
configuration definitions attached.

The following sections discuss two different ap-
proaches to include configuration definitions into a
service topology model. These are the direct inte-
gration (Section 4.1) and the transparent integration
(Section 4.2). Furthermore, Section 4.3 outlines how
to combine these two approaches to benefit from the
strengths of both.

4.1 Direct Integration

The direct way of embedding configuration definitions
into a service template is to define an artifact type,
which fits the structure of the artifacts including con-
figuration definitions that are created based on a par-
ticular configuration management tool. For instance, a
Chef artifact type needs to be defined to embed Chef
cookbooks into a topology model. We assume that in
future versions of TOSCA a set of standard types of im-
plementation artifacts such as “script artifact” will be
available. Implementation artifacts of these types can
be processed by an arbitrary TOSCA runtime environ-
ment. However, arbitrary types of implementation arti-
facts can be defined by creating an appropriate XML
schema definition. A TOSCA runtime environment
that processes a service template including custom
implementation artifacts then has to understand the
corresponding artifact type.

Artifact templates are defined inside a TOSCA ser-
vice template and can then be referenced as an im-
plementation artifact for a particular operation. The
following XML snippet represents an example for a
Chef-specific artifact template that installs and config-
ures a MySQL database server:

1 <ArtifactTemplate id="mysgl-chef-artifact"
2 type="chef:ChefArtifact">
3 <Properties>

4 <chef:ChefArtifactProperties

5 xmlns:chef="http://.../Chef"

6 xmlns="http://.../Chef">

7
8

<Cookbooks>
<Cookbook name="build-essential"
9 location="files/build-essential.zip"/>
10 <Cookbook name="openssl"
11 location="files/openssl.zip"/>
12 <Cookbook name="mysqgl"
13 location="files/mysql.zip"/>

14 </Cookbooks>



15 <Roles>

16 <Role name="db-server"

17 location="files/db-server.json"/>
18 </Roles>

19 <Mappings>

20 <PropertyMapping mode="input"
21 propertyPath="/RootPassword"
22 cookbookAttribute="mysql/root_pw"/>

23 </Mappings>
24 <RunList>

25 <Include>
26 <RunListEntry roleName="db-server"/>
27 </Include>

28 </RunList>

29  </chef:ChefArtifactProperties>

30 </Properties>

31 <ArtifactReferences>

32 <ArtifactReference reference="files">

33 <Include pattern="build-essential.zip"/>

34 <Include pattern="openssl.zip"/>
35 <Include pattern="mysql.zip"/>
36 <Include pattern="db-server.json"/>

37 </ArtifactReference>
38 </ArtifactReferences>
39 </ArtifactTemplate>

This example outlines the structure of an artifact
template including the generic parts that are common
for each artifact template as well as the Chef-specific
parts. The ArtifactTemplate element (line 1) itself be-
longs to the generic parts and owns two attributes: the
id attribute specifies a unique identifier for this par-
ticular artifact template inside the service template.
The rype attribute specifies the artifact type. The Ar-
tifactReferences element (lines 31-38) including all
its child elements is a generic mechanism for artifact
templates to point to the files included in the CSAR
that are necessary to process the artifact. In case of
Chef artifact templates, the cookbooks and role defi-
nitions get referenced in this section. The content of
the Properties element (lines 3-30) is Chef-specific.
The structure of the ChefArtifactProperties element
(lines 4-29) including all its child elements can be
defined using an XML schema definition including the
following parts:

Cookbooks: Each cookbook that is required to re-
alize a particular artifact template is referenced using
a Cookbook element (lines 8—13). This includes cook-
books that are directly referenced inside the RunList
section as well as dependencies of these.

Roles: Each role definition that is required to real-
ize a particular artifact template is referenced using a
Role element (lines 16—17). This includes roles that
are directly referenced inside the RunList section as
well as dependencies of these.

Mappings: Values of node type properties can be
mapped to cookbook attributes using a PropertyMap-
ping element (line 20-22). The propertyPath attribute

contains an XPath expression that points to a particu-
lar property. To refer to the corresponding cookbook
attribute, the cookbookAttribute attribute is used. The
same can be done for relationship type properties. Due
to the fact that a relationship owns a source node and
a target node, their property values can be mapped
using a SourcePropertyMapping or a TargetProper-
tyMapping element. If the particular artifact template
implements a script operation, input and output param-
eters can be mapped using an InputParameterMapping
or an OutputParameterMapping element.

RunList: At its core, a Chef artifact template de-
fines which recipes and roles have to be part of the
corresponding run list. The RunList element (lines
24-28) can contain two child elements: the Include
element consists of at least one RunListEntry element
that points to recipes and roles. These have to be part
of the run list in the given order. The RunListEntry
child elements of the Exclude element denote recipes
and roles that have to be explicitly excluded from the
run list. A RunListEntry element can either point to
a role as shown before or it can directly refer to a
particular recipe:

1 <RunListEntry cookbookName="mysql"
2 recipeName="install"/>

As an additional remark regarding the definition
of property mappings, the mode attribute specifies
the mapping direction: “input” means that the prop-
erty value is mapped to the cookbook attribute be-
fore the Chef recipes are executed, “output” maps
the cookbook attribute to the property after the Chef
recipes were executed, and “input-output” combines
both kinds of mapping.

This is how Chef artifact templates can be realized
using the direct integration approach. The TOSCA
runtime environment has to understand the content
of the ChefArtifactProperties element to perform the
corresponding actions. However, it is completely up to
the TOSCA runtime environment how to perform these
actions. Two options are: the Chef server’s REST API
and Chef’s command line interface. Furthermore, the
artifact template does not prescribe whether a Chef
server is required to realize the artifact. Alternatively,
the TOSCA runtime environment can just use a Secure
Shell connection (SSH) to push the cookbooks and
role definitions to the nodes and then use Chef solo to
execute them.

4.2 Transparent Integration

Configuration definitions can also be embedded into a
service topology model in a transparent way using the
standard artifact type “script artifact.”” Consequently,
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Figure 6: Transparent integration using a wrapper script.

the TOSCA runtime environment does not have to un-
derstand implementation artifacts of custom artifact
types such as Chef-specific artifacts. Of course, we
assume that an arbitrary TOSCA runtime environment
can process artifacts of type “script artifact” as men-
tioned in Section 4.1. In practice, this approach of inte-
grating configuration management can be realized by
creating “wrapper scripts” that call the configuration
management tool with corresponding parameters to
point to the configuration definitions. Figure 6 shows
how wrapper scripts are used to perform operations
on a target node using Chef: first, the TOSCA run-
time environment copies the corresponding wrapper
script to the target node and then triggers its execution;
additional files that are required for the execution of
the wrapper script are copied to the target node, too.
Second, the wrapper script calls the Chef client. These
wrapper scripts can be attached to the topology model
using implementation artifacts of type “script artifact”
in TOSCA. However, some constraints such as the
configuration of the agent that processes the config-
uration definitions are hard-wired inside the wrapper
scripts. The result is a loss of flexibility to process
configuration definitions because the TOSCA runtime
environment does not understand what is happening
inside a wrapper script. It cannot control how the
wrapper script performs its work. In addition, it is
hard to make the wrapper scripts portable. The follow-
ing XML snippet presents an example for a wrapper
artifact template of type “script artifact:”

1 <ArtifactTemplate id="mysqgl-wrapper"
2 type="af:ScriptArtifact">
3 <Properties>
4 <af:ScriptArtifactProperties
5 xmlns:af="http://.../StandardArtifacts"
6 xmlns="http://.../StandardArtifacts">
7 <ScriptLanguage>sh</ScriptLanguage>
8 <PrimaryScript>
9 scripts/mysgl-install.sh
10 </PrimaryScript>
11 </af:ScriptArtifactProperties>
12 </Properties>
13 <ArtifactReferences>
14 <ArtifactReference reference="files">

15 <Include pattern="build-essential.zip"/>
16 <Include pattern="openssl.zip"/>

17 <Include pattern="mysql.zip"/>

18 <Include pattern="db-server.json"/>

19  </ArtifactReference>
20 <ArtifactReference reference="scripts">

21 <Include pattern="mysqgl-install.sh"/>
22 </ArtifactReference>
23 </ArtifactReferences>
24 </ArtifactTemplate>

This artifact template implements the very same
operation as the Chef-specific artifact template pre-
sented before (Section 4.1). The content of the Scrip-
tArtifactProperties element (lines 4-11) is limited to
some generic meta data regarding the corresponding
script. All the Chef-related information such as the
mappings and the run list entries are hidden inside
the wrapper script “mysql-install.sh.” As a result, the
Chef specifics of the artifact template are completely
transparent to the TOSCA runtime environment: the
runtime implementation does not have to know any-
thing about Chef. However, all the actions necessary
to realize the artifact are hard coded inside the wrap-
per script: the TOSCA runtime environment does not
have much flexibility in performing the corresponding
actions. Whereas for the direct integration approach
the mapping of properties and parameters is explicitly
defined inside the artifact template, these mappings
are hidden inside the wrapper script for the transparent
integration. The TOSCA technical committee did not
establish a standardized convention yet how scripts
can access properties of nodes and relationships. One
possible convention for TOSCA runtime environments
is to expose all properties as system environment vari-
ables to the script. As an example, the wrapper script
can access the “$RootPassword” variable to get the
value of the node type property “RootPassword.” All
the knowledge how to map these property values to
the configuration management tool is part of the logic
implemented inside the script.

4.3 Combined Integration

The transparent integration approach is not meant to be
used solely because wrapper scripts are not intended
to be created manually. The goal of the combined
integration is to bring together the strengths of both
integration approaches by including two alternative
artifact templates for each operation as outlined in Fig-
ure 7: one that follows the direct integration approach
and another one that follows the transparent integra-
tion approach. However, the artifact templates that are
based on the transparent integration approach includ-
ing wrapper scripts are not created manually. They
are programmatically generated based on the artifact
templates that follow the direct integration approach.
Then, the TOSCA runtime environment can decide
whether to process the standard artifacts or to process
the custom artifacts if the corresponding artifact type is
understandable for the particular TOSCA runtime en-
vironment. The actual decision of the TOSCA runtime



Table 1: Comparison of direct, transparent, and combined integration.

Direct Int. Transparent Int. Combined Int.
TOSCA runtime environment can process configuration definitions directly + - +
TOSCA runtime environment does not have to understand custom artifact types - + +
High degree of portability — - +

environment which artifact template to process can
be made based on certain compliance rules. Because
wrapper scripts are “black boxes” for the TOSCA run-
time environment and could possibly contain harmful
content, the TOSCA runtime environment may always
prefer artifact templates that follow the direct integra-
tion approach.

/Life\Create > Chef

Username le/ i > 1 i
Database Server [ISAZECIITEEN eI
Password Type |[Wrapper
| Script |

Figure 7: Combined integration results in two alternative
implementation artifacts for each operation.

Beside the approach of programmatically gener-
ating individual wrapper scripts as mentioned before,
a generic wrapper script can be built that can be pa-
rameterized and thus used to process arbitrary Chef
recipes. This approach of building generic wrap-
per scripts can be extended by establishing a public
community-driven repository to share generic wrap-
per scripts. These scripts enable an arbitrary TOSCA
runtime environment that only understands implemen-
tation artifacts of a specific type such as “script artifact”
to process any other type of artifacts if there is a cor-
responding wrapper script available. As a result, the
creator of a CSAR can use his preferred configuration
management tool or scripting language to implement
node type operations and then include parameterized
wrapper scripts to make the CSAR portable. Conse-
quently, this approach enables separation of concerns
because the CSAR creator can stick to his domain and
include wrapper scripts to improve the portability of a
CSAR.

Table 1 summarizes benefits and drawbacks of the
integration approaches described in this section. It un-
derlines that the combined integration approach brings
together the strengths of both the direct and the trans-
parent integration approach leading to a high degree
of portability. This is achieved either by generating
individual wrapper scripts for each operation or by
using generic wrapper scripts. Both the direct and the
transparent integration approach alone do not lead to a
high degree of portability because either the TOSCA
runtime environment has to understand custom artifact
types or some constraints are hard-wired inside the
wrapper scripts.

5 EVALUATION

To evaluate the concepts presented in Section 4 and
to show that they are applicable in practice, we built
two CSARs that realize the Sugar service topology
presented in Figure 5. The first CSAR is based on
the direct integration approach including one Chef-
specific artifact for each operation. The second CSAR
realizes the combined integration approach by addi-
tionally attaching equivalent implementation artifacts
of type “script artifact” to each operation, including
individually generated wrapper scripts. Both CSARs
are completely self-contained including all Chef cook-
books and role definitions.

We did not include any management plans into the
CSARs. As aresult, a TOSCA runtime environment
has to understand the declarative model that is defined
by the topology template. In contrast to an imperative
model, a declarative model does not include a “build
plan” that explicitly specifies the steps required to be
performed to deploy a service instance. To enable
the declarative approach of deploying a CSAR, we
assume that the lifecycle operation “create” is part of
each node type. Implementation artifacts to install
and configure the corresponding software component
are attached to these “create” operations. The deploy-
ment of a declarative model is implemented by travers-
ing the topology template and calling the “create” op-
erations. All “create” operations of the middleware
stack inside the service topology such as the Apache
Web server and the MySQL database server are imple-
mented using cookbooks that are publicly shared by
the Chef community.® The only cookbook that we im-
plemented manually is the Sugar cookbook. It includes
recipes to install and configure the application, to set
the Sugar database up, and to connect the application
to the database.

In addition, we enabled the deployment of the
CSARs in three different ways: (1) we implemented a
lightweight TOSCA runtime environment that can pro-
cess Chef-specific implementation artifacts attached to
the “create” operations. These artifacts get processed
by Chef solo. This is realized by copying the Chef
cookbooks and role definitions to the target node us-
ing SSH and then calling the Chef client in Chef solo
mode with the corresponding parameters. (2) We ex-
tended the current TOSCA runtime environment of

http://community.opscode.com



the IBM SmartCloud Orchestrator'? to process Chef-
specific artifacts either using an existing Chef server
or by Chef solo. The Chef solo variant is implemented
similarly to the implementation outlined before us-
ing SSH. In case of the Chef server variant the Chef
server’s REST API is used to upload the cookbooks
and role definitions and to assign recipes and roles to
the nodes that are registered at the Chef server. Then,
the Chef client running on each node retrieves and
processes the assigned cookbooks and role definitions.
In addition, we utilized the Chef server to perform
simple management tasks regarding the deployed ser-
vice instance. (3) A student team developed another
lightweight TOSCA runtime environment during the
“Extreme Blue 2012” summer internship at IBM. It
understands implementation artifacts of type “script
artifact” only. However, it is able to process the CSAR
that was created based on the combined integration
approach without any extension or modification. It
basically executes the wrapper scripts, which then call
the Chef client with the corresponding parameters.

6 RELATED WORK

Because large and complex service topologies are
hard to manage using plain configuration management,
the DevOps community establishes additional higher-
level tooling such as Marionette Collective (Turnbull
and McCune, 2011; Loope, 2011) and Spiceweasel.!!
These tools provide more convenience to manage clus-
ters and collections of nodes. Marionette Collective
provides a framework that can be used in conjunction
with both Puppet and Chef. Spiceweasel is a Chef-
based command line tool to ease the management of a
set of nodes, but it is much simpler and more limited
compared to Marionette Collective. The configura-
tion of a collection of nodes can be described using
a document written in “JavaScript Object Notation”
(JSON). Then, several Chef commands are being gen-
erated based on this document to perform the actual
deployment. However, these tools do not lift configura-
tion management tooling to the level of model-driven
management because they do not introduce a holistic
meta model for managing complex service topologies
as TOSCA does.

Similar to Spiceweasel, Amazon Web Services’
CloudFormation'? is a service offering to manage a
set of resources in the Amazon Cloud. CloudForma-
tion templates are written in JSON and can be used

19http://ibm.co/CPandO
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to instantiate and configure a set of resources such as
virtual machines and object stores. In contrast to a
TOSCA service template, a CloudFormation template
does not include a holistic service topology model in-
cluding relationships between nodes. Further, a Cloud-
Formation template can only refer to resources that are
available inside the Amazon Cloud.

Canonical Juju'? is a service orchestration frame-
work for sharing and reusing DevOps best practices
in the form of self-contained units. These shareable
and reusable units are called “charms.” A single charm
represents a service model that can be instantiated.
In addition, relations can be established between ser-
vice instances, so Juju’s meta model has similarities to
TOSCA. As a result, Juju enables model-driven Cloud
management. However, there are limitations when it
comes to portability because Juju is strongly focused
on the ecosystem around the Ubuntu Linux distribu-
tion. The scripts included in a charm representing the
implementation artifacts are usually shell scripts or
Python scripts designed to be executed on a Ubuntu
Linux system only.

7 SUMMARY AND OUTLOOK

We presented concepts to integrate configuration man-
agement with model-driven Cloud management. The
goal was to bring together the strengths of both ser-
vice management paradigms. This was achieved based
on TOSCA, an emerging standard to realize model-
driven Cloud management. Different concepts were
described how to include configuration definitions into
a CSAR: the direct integration of artifacts including
configuration definitions requires the TOSCA runtime
environment to understand the corresponding artifact
type. However, there are no hard-wired constraints
included in the artifacts, so the TOSCA runtime envi-
ronment has a high degree of flexibility in processing
the artifacts. The transparent integration approach can
be used to enable the processing of configuration def-
initions in a TOSCA runtime environment that does
not understand the corresponding artifact type. Both
integration approaches can be combined to make a
CSAR highly portable. These integration concepts
are following the design principles of TOSCA and
their implementation does not need any extension of
TOSCA itself. The integration of configuration defini-
tions is the foundation for creating portable CSARs.
There are many configuration definitions publicly
available that can be reused. These can be included
into a CSAR without modifying them. Configuration

Bhttp://juju.ubuntu.com



definitions can also be used to perform simple man-
agement tasks. However, configuration definitions are
created using a domain-specific language (Giinther
et al., 2010). Consequently, that specific language has
to be learned when manually creating such an artifact.

The examples and the evaluation presented in this
paper were strongly related to Chef. However, the
underlying concepts are not Chef-specific. As a result,
the integration concepts can be adapted to be used and
implemented in conjunction with other configuration
management tooling such as Puppet because they own
a similar architecture as outlined in Section 3.2. This
will be evaluated in future work.

OpenTOSCA'# is an open source implementation
that provides a TOSCA runtime environment. Cur-
rently, OpenTOSCA is being extended to process im-
plementation artifacts of type “script artifact.” Then,
the integration concepts described in Section 4 can be
further evaluated based on OpenTOSCA.

Moreover, it will be evaluated how existing con-
figuration definitions can be reused even more eas-
ily in the world of model-driven Cloud management.
This makes sense because of the existing and growing
ecosystems of configuration management products.

The contributions described in Section 4 are mainly
limited to service deployment. Future research will
focus on utilizing configuration management for man-
agement tasks that are performed after the actual de-
ployment of a service instance. The goal is to orches-
trate configuration definitions using management plans
as they can be defined in a TOSCA service template.
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